UNITED STATES @@

SECURITIES AND EXCHANGE COMMISSION
WASHINGTON, D.C. 20549-0402

DIVISION OF
CORPORATION FINANCE

LT ———

05049393 ,
7
Edward S. Lowry / W
. Act: /
M. J. Leslie Lowry .
Section: 2
7 Alder Way _ LAY
Bedford, MA 01730 Rule: R

Public /] ~
Re: International Business Machines Corporation ~ Availability: 4 ﬁ 0?003
Incoming letter dated December 30, 2004 [

Dear Mr. and Mrs. Lowry:

This is in response to your letter dated December 30, 2004, which we received on
January 10, 2005, concerning the shareholder proposal submitted to IBM by
Edward S. Lowry and M. J. Leslie Lowry. On January 6, 2005, we issued our response
expressing our informal view that [BM could exclude the proposal from its proxy
materials for its upcoming annual meeting.

We received your letter after we issued our response. After reviewing the
information contained in your letter, we find no basis to reconsider our position.

Sincerely,

0D 85500

(4

Jonathan A. Ingram
Deputy Chief Counsel

APR 4 2005

PROCESSED

cc: Stuart S. Moskowitz
Senior Counsel APR 1 2 2@05?
International Business Machines Corporation THOMSG
New Orchard Road FINANGY A{s

Armonk, NY 10504

Edward S. Lowry

7 Alder Way

Bedford Mass 01730
781 276-4098
eslowry@alum.mit.edu
users.ren.com/eslowry

December 30, 2004

U.S. Securities and Exchange Commission
Division of Corporation Finance

Office of Chief Counsel

450 Fifth Street, N.W.

Judiciary Plaza

Washington DC 20549

Subject: Stockholder proposal of Mr. and Mrs. Edward S. Lowry

In a letter to you dated December 13, 2004, Stuart S. Moskowitsz,
Senior Counsel at IBM requested on behalf of the Company "that no
enforcement action be recommended if it excludes the Proposal on
the basis of Rule 14a-8(i) (7)". He claims that "The design,
development and support of IBM's software are all matters falling
directly within the Company's ordinary business operations".

We are writing to request that you take enforcement action to
require that the Proposal not be excluded.

The Proposal gives IBM stockholders an opportunity to give
guidance to IBM management on corporate citizenship issues which
are outside the Company's ordinary business operations. Thirty
vears is a long time to delay progress in dealing effectively
with the most basic problem of software technology, its high
level of complexity. The delay poses issues of grave importance
to IBM, to its stockholders and to the United States.

The long term delay in simplifying software (a demonstrable fact,
not questioned by Mr. Moskowitz) has caused many disasters so
far, and may cause worse disasters in the future if corrective
action is not taken. Some of the past disasters are listed on the
first 2 pages of the enclosed paper "Software Simplicity, and
hence Safety -- Thwarted for Decades" by Edward S. Lowry. One
such disaster has been evolving over this past Christmas weekend
as thousands of holiday travellers were stranded because of
overly complex software.

The issues involved in this Proposal tower above those of
ordinary business operations:

From washingtonpost.com, December 15, 2004, page E03:
"America risks losing its leadership of the global economy
if government and industry fail to make changes that
encourage innovation ...". They were paraphrasing a recent

report from the Council on Competitiveness. Productivity
growth for software was the worst of several economic
sectors from 1998 to 2003 according to a chart published in
IEEE SOFTWARE, November/December 2004, page 93.

From the Seattle Post-Intelligencer, December 5, 2004:
"Cyberterrorism could be the most devastating weapon of mass
destruction yet and could cripple the U.S. economy, former
CIA Director Robert Gates said at a terrorism conference
Saturday". The vulnerabilities to cyberterrorism are
directly aggravated by needless software complexity.

The complexity of anti-missile software was associated with
system failures in both Gulf wars which were fatal to US
soldiers. One of the failures killed British airmen. The
planned missile defence shield has similar problems where
failure could result in a nuclear explosion over a U.S.
city.

In recent weeks, both the President and the Secretary of
Defense have made strong claims to be doing all they could
to assure the safety of U.S. troops. By neglecting software
simplicity for 30 years, software business leaders have
expressed a contrasting attitude. IBM stockholders may wish
to express more support for the troops.

Mr. Moskowitz says "He would like IBM to simplify our software
utilizing a design IBM developed in 1974...." This statement
misrepresents our intention. Many improvements over the 1974
design have been identified in the past 30 years. IBM is capable
of doing much better. We would like them to do much better. The
30 year gap leaves a wide range of latitude for making technical
choices. The 1974 design is only identified to establish that
significant improvements over currently available technology are
possible and were long ago within the range of IBM's capability.
Thank you for your attention.

oord 5 hoony 50D 37
Edward S. Lowry

A é%@%u/ iy 3 0

M./J. Leslie Low/r.‘y

Attachment

cc: Stuart S. Moskowitz, Senior Counsel
Office of the VP, Assistant General Counsel
IBM
New Orchard Road
Armonk NY 10504

Software Simplicity, and Hence Safety
-- Thwarted for Decades

Edward S. Lowry
Bedford Mass. USA
eslowry@alum.mit.edu

users.rcn.com/eslowry

Abstract — Leading providers of software could best
improve their productivity and the safety of their products
by large scale simplification. However, incentives to
complicate other people's lives have been strong and
leaders have avoided noticing opportunities for serious
simplification for decades. In failing to pursue
simplification (or knowledge of basic structures), the
software community has shewn an aversion toward
fundamental issues and the public safety that seems
unprecedented in other technologies. Half the labor force
works to arrange pieces of information having almost no
idea what is a reasonable structure for pieces of
information. In effect, the software community has been
keeping human minds debilitated on an increasingly large
scale in order to keep them in a state of dependency.
Leading organizations responsible for software safety
should be regarded as a menace to public safety until their
competence in software simplicity is demonstrated.

Keywords: software; simplicity; safety

SIMPLIFICATION, LONG DELAYED

Software safety is a problem of managing complexity
effectively. An obvious approach is to eliminate unhelpful
complexity. Technology for doing so has fallen decades
behind the leading edge.

The office of US Senator John Kerry helped to check on the
delay. The main question was whether anyone working in the
US Federal Government has experience working with
technology which allows for simplicity in expressing software
as advanced as what IBM designed by 1974 and published in
1977(1]. Since December 2000 he has presented the question
to 9 government agencies. So far, none has reported finding
anyone that advanced and all of them avoided answering the
question.

The agencies queried were:
® Office of Technology Policy (Dept of Commerce)
® National Science Foundation
® United States Air Force
® General Accounting Office
® National Aeronautics and Space Administration
@ National Institute for Standards and Technology

Qctober 2004

® Dept of Education

® Dept of Homeland Security

® Dept of Defense
As of this writing only NSF, GAO, NASA, NIST, and DHS
have responded on paper. My interpretation of those responses
and non-responses is that they could not readily find such
competence, they are not interested in developing such
competence, and they were willing to conceal its absence, even
from a US Senator. To my knowledge there are only a few
dozen people anywhere with such experience. They worked at
Digital Equipment Corporation during the 1980s.

For decades I have observed that software leaders have shown
little tolerance for serious efforts at simplification and little
tolerance for the truth about simplification. That lack of
tolerance can now be fairly well documented. The ACM
Computing Surveys V28 Nol, March 1996 [2] contains "69
short articles that span the discipline of computer science". It
almost totally ignores simplicity issues -- the dominant
problem with software for millions of users. I found only three
sentences which were on topic, and they only acknowledged
simplicity as a valid goal. Current computer languages have
poor simplicity of expression compared with what IBM
designed 30 years ago{l]. The correspondence with Sen.
Kerry’s office shows that a small but somewhat independently
selected sample of software leaders are consistent in resisting
the truth about simplicity and willing to violate a public trust
to do so. The risks in some cases seem very large.

Results of decades of deliberate opposition to simplification
include:

¢ Deficient math and science education due to failure
to express precise information precisely.

® A flood of needless and burdensome complexity
going into schools as educational technology.

® Users entangled in proprietary complexity for
decades.

® Massive degradation of the quality of technical
information: accessibility, usability, clarity,
interoperability, ductility.

¢ A probable contributing factor to crash of KA§01,
August 1997, 226 dead.

® A possible contributing factor to 20% of US
casualties in Gulf War I.

® A probable contributing factor to 3 friendly fire
deaths in Gulf War II.

® A contributing factor to the August 2003 northeast
power outage, 50 million affected.

® A contributing factor in many cyber-attacks.

® Failure of the FAA to upgrade its air traffic safety
systems.

Based on a talk at the 2004 International Symposium on Technology and Society
(ISTAS’04). Copyright © 2004 by the Institute of Electrical and Electronics Engineers

® Large part of the $60B annual cost to the US of
software errors (as estimated by NIST).

® Political leaders dependent on technical advisors who
are over 30 years behind the leading edge on
simplicity issues,
Burdensome technological instability.
Large learning loads for skills of ephemeral value,
Computer science research blunted.
Monopolization in the software industry,
Multi $B information system fiascos, Eg IRS.

SIMPLIFYING TECHNICAL EDUCATION AND COMMUNICATION

The damage caused by the aversion to simplification goes well
beyond software, Simplification of software and simplification
of the presentation of most kinds of technical subject matter
are closelyrelated problems. Educators massively teach people
how to arrange pieces of information but they have almost no
idea what is a reasonable structure for pieces of information.
Asdiscussed in Appendix A, extreme simplification constrains
the data structures used to represent information including
technical knowledge. It appears to lead to an enduring
optimum structure for “atomic” pieces of information. That
optimum can be used to provide simple, readable, integrated
presentations of technical subject matter [3]. Simplifications of
subject matter in the past have been localized, but this applies
to almost any technical subject from Accounting to Wave
mechanics.

One result of understanding optimum data object structure
makes it practical to fix a fundamental (but generally
unnoticed) problem with technical education: the pervasive
failure to express precise information precisely enough.
Because ofinadequacies in traditional mathematical notations,
teachers have expressed only part of their technical subject
matter using precise mathematical expressions. Other
information which could have been expressed precisely has
necessarily been diffused into natural language text, diagrams,
metaphors, examples and other informal expression. This has
left the student with a large non-optional burden of distilling
out the precise information and integrating it. Better
understanding of the basic structure of information shows that
much of that burden can be avoided. Multiple presentations
can be helpful, of course, but the availability of a single,
complete, integrated presentation can avoid much
mystification.

Simplified representation of technical knowledge may broadly
enhance communication and creativity. Use of current
technical languages forces people to be obscure.

SOME PRESTIGIOUS PERVERSITIES

The following observations are based on personal experiences.
It would be helpful if others would confirm the specifics and
the overall pattern they suggest.

L] In the 1970s IBM spent roughly $1B on a project
whose stated goal was making development of
computer applications easier but the goal was an
elaborately presented sham.

The National Science Foundation used misleading
evasion in 1996 to avoid exposing its weaknesses in
simplicity and again in 2002,

] In 2001 the World Wide Web Consortium
volunteered that the languages they were introducing
were basically 1970s technology.

L] In 1992 Digital Equipment Corporation moved the
leading edge of its software technology backwards by
15 years from a simplicity point of view. In 1988
they squelched discussion of data object optimality.

° The technical journals of the leading computer
professional societies, ACM and IEEE, have
published nothing on simplicity of expression in
computer language or on the fine structure of
information as advanced as what IBM [1] and DEC
[4] published in 1977 and 1978.

L] The IEEE misleads the public and violates its own
code of ethics by granting "Certified Software
Development Professional" credentials without
disclosing its 30 year skill gap in simplicity.

. Hewlett-Packard presented its largest product rollout
in 2003 using a marketing campaign centered on
simplicity, while its patent portfolio [5] helps to keep
software in a state of complexity that is “square
wheel" unreasonable.

] "Simplicity is a jihad" for Microsoft, said Bill Gates
in 1998 [6], as Microsoft prepared to introduce a
major new programming language C#, whose
simplicity of expression is decades behind the leading
edge.

L About 200 participants in the High Dependability
Computing Consortium had little response to
questions about their abilities in software simplicity.

L MIT has over 400 computer science projects using
software technology 30 years behind the leading edge
on simplicity.

INTERPRETATIONS

I am an engineer with limited understanding of the social
processes which have produced the above failings but
experience with the issues makes it appropriate to comment.
Summarizing broadly, my experience has been that higher
prestige has correlated well with lower tolerance for large
scale simplification and lower tolerance for the truth about
simplification.

Incentives to complicate other people's lives have a long
history associated with a lot of social tension. Replacement of
Roman numerals took centuries. Social upheaval accompanied
simplification of the French legal system (Code Napoleon) and
the introduction of the metric system. Simplicity has been a
recurring theme in political and religious tensions.

In the computer industry complexity burdens form a large
barrier discouraging customers from switching vendors.
Efforts to keep those barriers high has been a major factor
obstructing simplification. Anxieties about being simplified

out of jobs and billion dollar revenue streams are very real.

Large scale simplification is readily seen as threatening to cash
flow streams, both large and small. Even if individuals are
sympathetic to simplification, they are sensitive to its effect on
colleagues. The result is classic bureaucratic resistance to
simplification in larger organizations. Among software experts,
simplification can obsolete much of that part of their working
knowledge which consists of detailed operation of
idiosyncratic systems.

ESTRANGEMENT FROM ENGINEERING

Software technology has not internalized traditional
engineering values very effectively. The basic engineering
value of getting more for less requires some quantification of
benefits and costs, or at least dependable comparisons.

Simplification fits that paradigm better than most computer
science. Making data objects more uniform, and up to a point
simpler, produces improvements in:

® simplicity of applications,

® simplicity of language, for a given level of capability,

® generality of language
all at once. It expands the engineering envelope on three
leading edges. In doing so it presses the limits for those
leading edges and clarifies what is possible for each of them.

An example of inadequate use of engineering criteria occurred
in the design of the Ada language. It was designed to meet
requirements specified in terms of features rather than
capability levels which could be compared. As a result Ada has
many features but poor simplicity of expression compared with
what was known several years before it was designed. Other
languages such as C++, Java, and C# have been introduced
with capabilities far behind known leading edges of the
engineering envelope. The term "software engineering” has
been widely inverted so that its practitioners are more focused
on adapting people to technology rather than vice versa. The
state of software engineering is on display at many bookstores
where hundreds of feet of bookshelf space tell people how to
tell their computers what they want done.

What may be the most influential paper in software in recent
decades, "No Silver Bullet..." by F.P. Brooks Jr. [7] broadly
discouraged traditional engineering approaches to software
problems.

In many engineering fields, prizes for winning competitions
and breaking records have helped to focus attention on how to
advance the leading edges and to create institutional
knowledge of best practices. In contrast, the ACM
International Collegiate Programming Contest has impeded
progress by specifying what technology the participants may
use.

CORRECTIVE RESPONSES

There are probably large organizations that would really
welcome major simplifications. Telling them about the long
term obstruction and potential for improvement could
encourage them to initiate improvements or create pressures on
others to do so. Individuals could also take action. The current
lack of effort suggests that even small energy levels could have
an impact.

Some could help by using various forums or creating forums
to expose the backwardness of software providers and
whatever irresponsible attitudes they have. Taxpayers and
tuition payers can use their standing to extract the truth about
knowledge of simplification from those with incentives to be
oblivious. The coding examples in Appendix B can be used to
make comparisons of simplicity of expression to test how up-
to-date a person’s programming language skills are. "Toward
Perfect Information Microstructures"[8] can be used as an
initial competence criterion for understanding of the structure
of pieces of information.

High standards of competence and disclosure of competence
may reasonably be demanded when public safety is at issue.
Initial focus on providers in public safety areas could speed the
improvement of standards in other areas.

As the potential for simplifying technical subject matter
becomes clarified, analogous questioning of technical
educators may become increasingly appropriate. Senior
academics may be asked: “How can anyone who does not
understand the structure of pieces of information be qualified
to teach people how to arrange pieces of information?”

Use of colorful language in exposing backwardness is
problematic but may be appropriate with people who avoid
facing facts but are sensitive to public relations. The "square
wheel" unreasonableness of current representations used for
software and technical knowledge may be suggested or
queried. Software workers and technical educators might be
compared to architects and builders who have never seen a
reasonably shaped brick. Journalists could search for computer
scientists who can give an honorable account of themselves on
simplicity issues and report their findings. The search could be
framed as being in the aftermath of a hypothetical failure to
intercept a nuclear armed missile.

The larger scientific and engineering communities might be
persuaded to encourage more discipline among computer
scientists as a way of preserving their own claim to public
confidence. Scholarly study of the anomalous behavior is also
appropriate. There may be unique lessons to be learned about
the dependability of expert communities in general. Careful
checking for sincerity of efforts to simplify seems like a long
term need which grows as technology proliferates.

ACKNOWLEDGMENTS

I wish to thank Alex Brown, Leslie Lowry, and Muriel Adcock
for encouragement and assistance.

REFERENCES

(1 E. S. Lowry, “PROSE Specification”, IBM
Poughkeepsie Laboratory Technical Report
TR 00.2902, Nov 1977.

{21 “Perspectives in Computer Science”. ACM
Computing Surveys, Vol 28 No 1, March 1996.

3] E. S. Lowry, "Formal Language as a Medium for
Technical Education”, Proceedings of ED-MEDIA
96, p407, AACE, June 1996. See also
users.ren.comyeslowry.

[4] E.S. Lowry, "Accurate description of system
structure - A new standard of language quality",
Proceedings of the Digital Equipment Computer
Users Society, Vol 5, No2, 1978, p833.

[5] E.S. Lowry, "Data Processing System Having a Data
Structure with a Single Simple Primitive", US Patent
No. 5,664,177, Sept. 1997.

[6] M.J. Miller. "NT 5.0 and Beyond", PC Magazine
Nov 17, 1998, pg 4.

[7] F.P. Brooks Jr, "No Silver Bullet: Essence and
Accidents in Software Engineering", IEEE Computer,
Vol 20 No 4, April 1987.

(8] E. S. Lowry, "Toward Perfect Information
Microstructures”, Oct. 2003, Unpublished, See
users.rcn.conveslowry.

[93 P. Zave, “Feature Interactions and Formal
Specifications in Telecommunications”, IEEE
Computer, Aug 1993, pg28.

(10] K. B. Bruce, "Progress in Programming Languages",
ACM Computing Surveys, Vol 28 No 1, March
1996, pg247.

[11] D.D. Chamberlain et al, "SEQUEL2: A Unified
Approach to Data Definition, Manipulation, and
Control", IBM J. Res. Development, Nov. 1976, pg
560.

APPENDIX A: SIMPLIFICATION OPTIMIZES DATA OBJECTS

Failure to take straightforward steps in simplification has left
significant issues obscured. One such issue is the way that the
discipline of simplification imposes constraints on the fine
structure of the data. Those constraints create more
opportunities to simplify.

When needless complexity is thoroughly removed from
precise technical description, there is a kind of phase change
(analogous to freezing) which forces uniformity on the
structure of the component data objects used to represent the
technical subject matter. The simplification leads toward a
unique optimum structure for data objects for non-trivial
subject matter. The optimum is expected to be hierarchically
interconnected pointers [8) but that requires verification.

It appears to be one of a few dozen engineering optimizations
which converge on a stable structure similar to convergence
on: round wheels, vertical pillars, flat mirrors etc. In each case
a deficiency can be reduced to zero and no further (vibration
in wheels, shear forces in pillars, distortion in personal mirrors
etc). The abrupt barrier to further improvement makes the
optima permanent with well defined structures. In most cases,
the deficiency can be eliminated without significant tradeoffs
arising. In some cases however, the straightforward optimum
needs to be compromised. For example: spherical submarines
or straight line roads,

The effect of extreme simplification can be described in terms
of 6 kinds of constraint imposed on the structure of data
objects. The first 3 constraints are very simple and similar to

the constraint that wheels be round. They require that the data
objects be: purely connective, asymmetrical, and all have the
same structure.

Making data objects purely connective with no internal state
eliminates complexity resulting from the need to encode the
internal state. Eliminating pairs of connections that are
symmetrical avoids complexity which is no help since
symmetrical connections would defeat the need for
deterministic operation. Needs for non-deterministic
operation are better provided in other ways. Using a single
composite object with all the kinds of connection needed
simplifies the language and does no harm since unused
connections can be ignored.

There is also a need to provide for both simply expressed
operations on aggregates of data (functional expressiveness)
AND data structures which can accurately represent many
kinds of information structure (structural expressiveness).
Providing both the uniformity of data objects needed for
functional expressiveness and the flexibility of data objects
needed for structural expressiveness at the same time imposes
additional constraints.

Empirically, there are data object structures which practicably
satisfy these constraints, but only a few. Choosing among them
has little effect on the simplicity achievable or the way
applications would be expressed. They have no dependency on
the technical subject matter being represented as long as the
subject mattet is not structurally trivial. This makes itplausible
that there is a single permanent optimum structure for almost
all data objects! With the prospect that all data objects (pretty
much everywhere and always) will be the same, it makes sense
to think very carefully about choosing their structure. The
analysis[8] completely eliminates specific kinds of harmful
complexity with little need for compromise so differing ways
of measuring complexity have little effect on the results.

The questions presented by Senator Kerry also sought
information about what the government agencies knew about
the fine structure of information. The correspondence confirms
other observations that the software community has given
almost no thought to its most basic structures. From Airfoils to
Zippers, technologists have given meticulous attention to their
basic structures. Here too, the software community has shown
an aversion toward fundamental issues that has little if any
precedent.

One result of finding a unique optimum structure for data
objects (in non-trivial data structures) is that the functions
which operate on them can easily be merged into a single
language, regardless of the technical subject matter. Formal
language can then have an enduring core set of functions.
These make it technically practical to develop a "universal
language supporting technical literacy”. Formal language can
have a durable core and flexible open-endedness analogous to
natural language. Commentary by software leaders on the
possibility of achieving full language generality has tended
ng%r]d unsupported claims that it cannot or should not be done
,10].

APPENDIX B: SHANNON EXAMPLES

To assist in validating a 30 year delay in improving simplicity
of expression, raising quality standards in future efforts, and

testing people’s competence, the following list;of example
expressions are provided. They indicate what degree of
simplicity and clarity is achievable in a multi-purpose language
and roughly what was known to be achievable in 1974 as
recorded in: "PROSE Specification" [1] and implemented at
DEC about 1983.

These examples are translated from the first 10 examples
given[11] for Sequel 2 (now SQL) in the IBM Journal of
R&D, Nov 1976. For the first 10 expressions Sequel 2 (a
specialized data base language) uses 130 tokens. Shannon (a
multi-purpose language) uses 99 tokens. The original Sequel
2 code is omitted as irrelevant. Better comparisons would be
with C++, Java, Ada, Cobo}, etc. Permanent elimination of
categories of needless complexity is the more significant issue.
Expression 1.

English: Names of employees in Dept. 50

Shannon: name of employee of dept(50)
Expression 2.

Eng: All the different department numbers in the Employee
table.

Shan: dept_no of employee condense
Expression 3.
Eng: Names of employees in Depts. 25, 47 and 53.
Shan: name of employee of every dept where 25 or 47 or 53
Expression 4.

Eng: Names of employees who work for departments in
Evanston.

Shan: name of employee of dept of Evanston

Expression 5.

Eng: List the employee number, name and salary of
employees in Dept. 50, in order of employee number.

Shan: for employee of dept(50) minfirst empno
show(empno, name, salary)

Expression 6.
Eng: Average salary of clerks.
Shan: average (salary of clerk)
Expression 7.
Eng: Number of different jobs held by employees in Dept.50
Shan: count job of employee of dept(50) condense
Expression 8.

Eng: List all the departments and the average salary of
each.

Shan: for dept show(it, average(salary of its employee))
Expression 9.

Eng: Those departments in which the average employee
salary is less than 10,000.

Shan: dept where average(salary of its employee)} < 10000

Expression 10.
Eng: The departments that employ more than ten clerks.

Shan: dept where countits clerk) > 10

